THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH2010D Advanced Calculus 2019-2020

Problem Set 2

- 1. Let A = (0, 2, 3, 3) and B = (1, -1, 2, 3) be two points in \mathbb{R}^4 . Find the equation of straight line passing through A and B express it in standard form.
- 2. Find the equation of the plane Π containing the straight line

$$L: \frac{x-4}{2} = \frac{y-3}{5} = \frac{z+1}{-2}$$

and the point P(2, -4, 2).

- 3. Find the equation of the straight line given by the intersection of two planes $\Pi_1 : x + y z = 1$ and $\Pi_2 : x + 2y + 2z = 3$.
- 4. Let $\Pi : x_1 + 3x_2 2x_3 + x_4 + 3 = 0$ be an affine hyperplane and let P = (7, 21, -7, 3) be a point in \mathbb{R}^4 .
 - (a) Find the projection Q of the point P on Π .
 - (b) Find the image P' of P under the reflection across Π
 - (c) Let $L: (x_1, x_2, x_3, x_4) = (7, 21, -7, 3) + t(3, 10, -4, 4)$ for $t \in \mathbb{R}$, be a straight line passing though P. Find the equation of the straight line L' which is the reflection of L across Π .
- 5. Find the equation(s) of the plane(s) Π such that Π is parallel to the plane $\Pi' : x + 2y 2y + 3 = 0$ and the distance between the origin and Π is 4 units.
- 6. Let $L_1: \frac{x+2}{3} = \frac{y-3}{4} = z-2$ and $L_2: x-3 = 5-y = 1-z$ be two straight lines in \mathbb{R}^3 .
 - (a) Prove that L_1 and L_2 intersect at a point and find the coordinates of that point.
 - (b) Find the acute angle between L_1 and L_2 .
 - (c) Find the equation of the plane containing L_1 and L_2 .
- 7. Let Π be an affine hyperplane in \mathbb{R}^n given by the equation $A_1x_1 + A_2x_2 + \cdots + A_nx_n + B = 0$ and let $P(p_1, p_2, \ldots, p_n)$ be a fixed point.

Show that the perpendicular distance between Π and P is $\left| \frac{A_1 p_1 + A_2 p_2 + \dots + A_n p_n + B}{\sqrt{A_1^2 + A_2^2 + \dots + A_n^2}} \right|.$

8. Suppose that $\Pi_1 : x + y + z = 1$ and $\Pi_2 : x - y + z = 2$ are two planes in \mathbb{R}^3 .

- (a) Show that the intersection of Π_1 and Π_2 is a straight line and find a parametric equation of that line.
- (b) Find the equation(s) of the plane(s) containing all the points which are equidistant from Π_1 and Π_2 .
- 9. Let $\gamma : \mathbb{R} \to \mathbb{R}^2$ be a curve defined by $\gamma(t) = (\cos 2t 1, \sin 2t + 2)$.
 - (a) Write down an equation of γ in x and y only. What is γ ?
 - (b) Find $\gamma'(t)$.

10. Let $\gamma : \mathbb{R} \to \mathbb{R}^2$ be a curve defined by $\gamma(t) = (4\cos 2t, 9\sin 2t)$.

- (a) Write down an equation of γ in x and y only. What is γ ?
- (b) Find $\gamma'(t)$.

- 11. Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$. Parametrize the straight line γ which passes through \mathbf{a} and \mathbf{b} .
- 12. Let $\gamma(t) = (ae^{-bt} \cos t, ae^{-bt} \sin t)$ for $t \in \mathbb{R}$, where a, b > 0, which is called the *logarithmic spiral*.

- (a) Show that as $t \to +\infty, \, \gamma(t)$ approaches the origin.
- (b) Show that $\lim_{t \to +\infty} \int_0^t |\gamma'(t)| dt$ is finite, that is γ has finite arc length in $[0, +\infty)$.
- 13. In the following diagram, a circular disk of radius 1 in the plane xy rolls without slipping along the x-axis and the curve is the locus of a fixed point on the circumference which is called a *cycloid*.

- (a) Give a parametrization of the cycloid.
- (b) Find the arc length of the cycloid corresponding to a complete rotation of the disk.